If you can sniff the packets coming out of an Asterisk system, you can extract the audio from the RTP streams. This data can be fed offline to a speech processing system, which can listen for keywords such as “credit card number” or “PIN”, and present that data to someone who has an interest in it. The stream can also be evaluated to see if there are DTMF tones embedded in it, which is dangerous because many services ask for password and credit card information input via the dialpad. In business, strategic in- formation could also be gleaned from being able to capture and evaluate audio. Using Secure RTP can combat this problem by encrypting the RTP streams; however, Asterisk does not support SRTP as of this writing. Work is under way to provide SRTP support (a patch exists in the trunk release, but it is not known as of this writing whether this will be back-ported to 1.4). |
Spoofing |
In the traditional telephone network, it is very difficult to successfully adopt someone else’s identity. Your activities can (and will) be traced back to you, and the authorities will quickly put an end to the fun. In the world of IP, it is much easier to remain anonymous. As such, it is no stretch to imagine that hordes of enterprising criminals will only be too happy to make calls to your credit card company or bank, pretending to be you. If a trusted mechanism is not discovered to combat spoofing, we will quickly learn that we cannot trust VoIP calls. |
What Can Be Done? |
The first thing to keep in mind when considering security on a VoIP system is that VoIP is based on network protocols, and needs be evaluated from that perspective. This is not to say that traditional telecom security should be ignored, but we need to pay attention to the underlying network. |
Basic network security |
One of the most effective things that can be done is to secure access to the voice network. The use of firewalls and VLANs are examples of how this can be achieved. By default, the voice network should be accessible only to those things that have a need. For ex- ample, if you do not have any softphones in use, do not allow client PCs access to the voice network. |
Unless there is a need to have voice and data on the same |
Segregating voice and data traffic. |
network, there may be some value in keeping them separate (this can have other benefits as well, such as simplifying QoS configurations). It is not unheard of to build the in- ternal voice network on a totally separate LAN, using existing CAT3 cabling and terminating on inexpensive network switches. It can be less expensive too. |